Binary Representations of Algebras with at Most Two Binary Operations: a Cayley Theorem for Distributive Lattices
نویسنده
چکیده
The notion of binary representation of algebras with at most two binary operations is introduced in this paper, and the binary version of Cayley theorem for distributive lattices is given by hyperidentities. In particular, we get the binary version of Cayley theorem for DeMorgan and Boolean algebras.
منابع مشابه
Prime Filters and Ideals in Distributive Lattices
The article continues the formalization of the lattice theory (as structures with two binary operations, not in terms of ordering relations). In the Mizar Mathematical Library, there are some attempts to formalize prime ideals and filters; one series of articles written as decoding [9] proven some results; we tried however to follow [21], [12], and [13]. All three were devoted to the Stone repr...
متن کاملUsing both Binary and Residue Representations for Achieving Fast Converters in RNS
In this paper, a new method is introduced for improving the efficiency of the Residue Number System, which uses both binary and residue representations in order to represent a number. A residue number system uses the remainder of the division in several different modules. Conversion of a number to smaller ones and carrying out parallel calculations on these numbers greatly increase the speed of...
متن کاملCoalgebraic representations of distributive lattices with operators
We present a framework for extending Stone’s representation theorem for distributive lattices to representation theorems for distributive lattices with operators. We proceed by introducing the definition of algebraic theory of operators over distributive lattices. Each such theory induces a functor on the category of distributive lattices such that its algebras are exactly the distributive latt...
متن کاملUsing both Binary and Residue Representations for Achieving Fast Converters in RNS
In this paper, a new method is introduced for improving the efficiency of the Residue Number System, which uses both binary and residue representations in order to represent a number. A residue number system uses the remainder of the division in several different modules. Conversion of a number to smaller ones and carrying out parallel calculations on these numbers greatly increase the speed of...
متن کاملDistributive Lattices of λ-simple Semirings
In this paper, we study the decomposition of semirings with a semilattice additive reduct. For, we introduce the notion of principal left $k$-radicals $Lambda(a)={x in S | a stackrel{l}{longrightarrow^{infty}} x}$ induced by the transitive closure $stackrel{l}{longrightarrow^{infty}}$ of the relation $stackrel{l}{longrightarrow}$ which induce the equivalence relation $lambda$. Again non-transit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IJAC
دوره 19 شماره
صفحات -
تاریخ انتشار 2009